Fuzzy inference-based fall detection using kinect and body-worn accelerometer
نویسندگان
چکیده
In this paper we present a new approach for reliable fall detection. The fuzzy system consists of two input Mamdani engines and a triggering alert Sugeno engine. The output of the first Mamdani engine is a fuzzy set, which assigns grades of membership to the possible values of dynamic transitions, whereas the output of the second one is another fuzzy set assigning membership grades to possible body poses. Since Mamdani engines perform fuzzy reasoning on disjoint subsets of the linguistic variables, the total number of the fuzzy rules needed for input-output mapping is far smaller. The person pose is determined on the basis of depth maps, whereas the pose transitions are inferred using both depth maps and the accelerations acquired by a body worn inertial sensor. In case of potential fall a thresholdbased algorithm launches the fuzzy system to authenticate the fall event. Using the accelerometric data we determine the moment of the impact, which in turn helps us to calculate the pose transitions. To the best of our knowledge, this is a new application of fuzzy logic in a novel approach to modeling and reliable low cost detecting of falls.
منابع مشابه
Fall Detection on Embedded Platform Using Kinect and Wireless Accelerometer
In this paper we demonstrate how to accomplish reliable fall detection on a low-cost embedded platform. The detection is achieved by a fuzzy inference system using Kinect and a wearable motion-sensing device that consists of accelerometer and gyroscope. The foreground objects are detected using depth images obtained by Kinect, which is able to extract such images in a room that is dark to our e...
متن کاملComparison of low-complexity fall detection algorithms for body attached accelerometers.
The elderly population is growing rapidly. Fall related injuries are a central problem for this population. Elderly people desire to live at home, and thus, new technologies, such as automated fall detectors, are needed to support their independence and security. The aim of this study was to evaluate different low-complexity fall detection algorithms, using triaxial accelerometers attached at t...
متن کاملFall Detection Using Body-Worn Accelerometer and Depth Maps Acquired by Active Camera
In the presented system to person fall detection a body-worn accelerometer is used to indicate a potential fall and a ceiling-mounted depth sensor is utilized to authenticate fall alert. In order to expand the observation area the depth sensor has been mounted on a pan-tilt motorized head. If the person acceleration is above a preset threshold the system uses a lying pose detector as well as ex...
متن کاملA Kinect based intelligent e-rehabilitation system in physical therapy
This paper presents an intelligent Kinect and fuzzy inference system based e-rehabilitation system. The Kinect can detect the posture and motion of the patients while the fuzzy inference system can interpret the acquired data on the cognitive level. The system is capable to assess the initial posture and motion ranges of 20 joints. Using angles to describe the motion of the joints, exercise pat...
متن کاملDevelopment of Wearable Human Fall Detection System using Multilayer Perceptron Neural Network
This paper presents an accurate wearable fall detection system which can identify the occurrence of falls among elderly population. A waist worn tri-axial accelerometer was used to capture the movement signals of human body. A set of laboratory-based falls and activities of daily living (ADL) were performed by volunteers with different physical characteristics. The collected acceleration patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 40 شماره
صفحات -
تاریخ انتشار 2016